

A Boundary Element model to calculate HRTFs. Comparison between calculated and measured data

W. Kreuzer, P. Majdak, A. Haider

Austrian Academy of Sciences, Acoustics Research Institute

Daga 2009

Supported by FWF Pr. P18401-B15

Model

How do we get our data

2 Results

- Measurement-Calculation
- Temperature
- Mesh-Perturbation

Measurement of HRTFs

- Anechoic chamber
- Rather long and complicated

Numerical Model

- 3D-Scan of a head
- Discretization with triangular elements
- Calculation using the boundary element method

ISF

- Frequencies up to 20000 Hz \rightarrow fine grid
- 8 elements per wavelength
- About 37.000 nodes and 70.000 elements
- Collocation BEM with constant elements
- Calculation with Fast Multipole Method

- 1550 nodes around the head as source
 - Elevation from -30° to 80°
 - Distance to head = 1.2 m
- One element near the ear canal as receiver
- Different setups
 - Additional shoulder mesh
 - Different levels of smoothness/mesh-size
 - Different temperatures

Set-up

- 1550 nodes around the head as source
 - Elevation from -30° to 80°
 - Distance to head = 1.2 m
- One element near the ear canal as receiver
- Different setups
 - Additional shoulder mesh
 - Different levels of smoothness/mesh-size
 - Different temperatures

- 1550 nodes around the head as source
 - Elevation from -30° to 80°
 - Distance to head = 1.2 m
- One element near the ear canal as receiver
- Different setups
 - Additional shoulder mesh
 - Different levels of smoothness/mesh-size
 - Different temperatures

Set-up

- 1550 nodes around the head as source
 - Elevation from -30° to 80°
 - Distance to head = 1.2 m
- One element near the ear canal as receiver
- Different setups
 - Additional shoulder mesh
 - Different levels of smoothness/mesh-size
 - Different temperatures

Set-up

- 1550 nodes around the head as source
 - Elevation from -30° to 80°
 - Distance to head = 1.2 m
- One element near the ear canal as receiver
- Different setups
 - Additional shoulder mesh
 - Different levels of smoothness/mesh-size
 - Different temperatures

イロト イ理ト イヨト イヨト

Figure: Sound source in front of the head. Frequency = 8kHz

Kreuzer, Majdak, Haider (ARI)

ISF

<ロ> (日) (日) (日) (日) (日)

Kreuzer, Majdak, Haider (ARI)

ISF

Comparison Measurement Calculation

Kreuzer, Majdak, Haider (ARI)

Daga09 8 / 18

Horizontal Plane

Horizontal Plane

9 10/18

Vertical Plane

Vertical Plane

Kreuzer, Majdak, Haider (ARI)

HRTF-Sim

Daga09 12/18

Possible Reasons

- Mesh not accurate enough
- Problems at mesh generation
- Position of the evaluation element

Influence of Temperature and Perturbation

Kreuzer, Majdak, Haider (ARI)

- Different speed of sound and density for different temperatures
- Random perturbations of length 0.5 mm

Temp [C]	c [m/s]	ho [kg/m ³]
-15°	322.2	1.36
0°	331.3	1.29
15°	340.5	1.23
30°	349.0	1.17

Other Experiments

- Different speed of sound and density for different temperatures
- Random perturbations of length 0.5 mm

Figure: Jittered ear mesh

Other Experiments

- Different speed of sound and density for different temperatures
- Random perturbations of length 0.5 mm

Figure: Jittered ear mesh

Kreuzer, Majdak, Haider (ARI)

Daga09 16 / 18

HRTF-Sim

Results

Kreuzer, Majdak, Haider (ARI)

Daga09 17 / 1

- Possible to calculate HRTFs for high frequencies
- Difference between measured and calculated data
- Mesh with all "characteristic features" is essential
- Temperature does not seem to have much influence
- Localization tests will be necessary

Thank you for your attention

TSF