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ABSTRACT

A linear system can be approximated in the time-frequency
domain by the composition of an analysis filterbank, a transfer
matrix (subband model) and a synthesis filterbank, a method
known as subband technique. In this paper we propose an iter-
ative method to jointly optimize the subband model, analysis
and synthesis filterbanks. To this end we propose a minimiza-
tion criterion which we solve using the so-called alternating
least-squares method. As a possible application we consider
the implementation of the so-called head related transfer func-
tions which are used in virtual acoustics. Simulation results
suggest that the subband technique, optimized using the pro-
posed method proposed method, is a promising approach.

keywords: Subband filters, Time-frequency analysis, Head-
related transfer functions.

1. INTRODUCTION

The subband technique represents a linear system in the time-
frequency domain. More precisely, the system is replaced by
the composition of an analysis filterbank, followed by a (usu-
ally diagonal) transfer matrix (called the subband model) and
a synthesis filterbank. This approach can be used for system
approximation [1], system identification [2], adaptive filter-
ing [3], channel equalization [4], etc., with the advantage of
having a higher numerical efficiency. However, the analysis
of this technique and optimal setup are not trivial.

The approximation of Hilbert-Schmidt operators (i.e., a
kind of linear time-variant (LTV) system) by the so-called Ga-
bor multipliers (i.e., a diagonal subband model without mem-
ory) has been studied in [5, 6], where, for given choices of
analysis and synthesis filterbanks, the subband model is cho-
sen to minimize the Hilbert-Schmidt norm. The case of linear
time-invariant (LTI) systems, was studied in [1], where the
optimal subband model was chosen to minimize the power of
the output error signal, assuming a white input signal.

In this paper we proceed a step further from [1]. More
precisely, we propose an iterative method to jointly optimize
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the choices of the subband model, analysis and synthesis fil-
terbanks, when the quality of the approximation is measured
by the power of the output error signal, assuming that the in-
put signal has an arbitrary but known power spectrum. To this
end, we consider the so-called alternating least-squares (ALS)
algorithm [7]. which consists of cyclic iterations where, at
each step, two of the three elements to be optimized are fixed,
and the third is optimized using linear least-squares (LLS).

The time-domain implementation of an LTI system is com-
putationally inefficient, and it is often prohibitive for some
applications, e.g., real-time audio applications where impulse
responses are in the order of several hundreds. A compu-
tationally efficient alternative implements the system in the
frequency domain; however, this approach is not suitable for
real-time applications, because it requires the block process-
ing of the “whole history” of the involved signals. To address
this issue, and for the case of systems of finite impulse re-
sponse (FIR) type, the so-called overlap-save and overlap-add
methods (OS/A) have been proposed [8]. Both methods per-
mit accommodating a trade-off between computational com-
plexity and latency (i.e., time-delay). Simulation results show
that a subband scheme, optimized using the algorithm de-
scribed above, offers a better trade-off than that of the OS/A
methods, provided a tolerance on the implementation error is
allowed. (Notice that an implementation error is unavoidably
introduced when using OS/A methods to implement a system
of infinite impulse response (IIR) type.)

In order to illustrate this point, we consider the implemen-
tation of the so-called head-related transfer functions (HRTFs),
which find applications in the so-called binaural virtual acous-
tics synthesis [9]. This technique consists of modifying a
sound source signal, so as to give the listener the sensation
that it is located in space. This is done by filtering the sig-
nal from the source using an HRTF, which describes the fil-
tering effects of the listener’s morphology (i.e. pinna, head,
torso, etc.) The HRTFs are given separately for the left and
right ears, and their associated head related impulse responses
(HRIR) are functions of the source location relative to the lis-
tener head’s position. In a virtual acoustics application, a pair
of filters needs to be computed for every sound source loca-
tion, which is often computationally unaffordable in real-time
applications.

Throughout the paper we use the following notation: com-



plex sequences (indexed by the integers Z) are denoted us-
ing non-bold lowercase letters (e.g., a). Vectors and matrices
whose elements are complex sequences are denoted by low-
ercase bold letters (e.g., a) and uppercase bold letters (e.g.,
A), respectively. Complex-valued vectors and matrices are
denoted using underlined letters (e.g., a and A). An LTI sys-
tem (or filter) g(q) is denoted as a function of the forward shift
operator q (i.e., qx(t) = x(t + 1)), and its impulse response
is denoted by g(t). Finally, we say that an LTI system g(q) is
FIR, with tap size lg and dg non-causal taps, if g(t) = 0 for
all t /∈ {−dg, · · · , lg − dg − 1}.

The proofs of results are not included in the paper and will
be included in a journal version.

2. SYSTEM APPROXIMATION USING SUBBANDS

The subband approximation scheme is shown in Fig. 1. The
linear system g(q) is approximated by splitting the input sig-
nal x(t) into M subbands using the array of filters h(q) =
[h1(q), · · · , hM (q)]T , followed by a downsampling operation
of factor D (i.e., one out of D samples is kept). In this way,
the subband vector signal ξ(t) is generated. The subband
model is an M × M transfer matrix Γ(q) whose output is
denoted by θ̂(t). Finally, the output signal ŷ(t) is gener-
ated by upsampling θ̂(t) by a factor of D (i.e., D − 1 zero
valued samples are added between every two samples), then
filtering each component using the array of filters f ∗(q) =
[f∗

1 (q), · · · , f∗
M (q)], and adding together all the resulting sig-

nals.

↓ D ↑ D

x(t) y(t)

ξ(t) θ̂(t) ŷ(t)
h(q) f∗(q)

g(q)

Γ(q)

Fig. 1. System approximation in the time-frequency domain.

We assume that the system g(q) is an IIR system. Also,
the filters in the arrays h(q) and f(q) are causal and FIR with
tap sizes lh and lf , respectively. Finally, the subband model
Γ(q) is diagonal with FIR filters of tap size lΓ and dΓ non-
causal taps, on each diagonal entry.

Comparison with OS/A methods: These methods per-
mit the implementation of an FIR system, whose tap size we
denote by lg . They consist of an iterative procedure in which,
at each iteration, a block of lg +L−1 samples is processed in
the frequency domain. Then, L samples are skipped, and the
next iteration is processed [8]. The computational cost and la-
tency of the OS/A and subband methods are given in Table 1,
where we assume that the filterbanks are of Gabor type (i.e.,
there exists h0(t) such that, for all m ∈ {1, · · · , M} and all
t ∈ Z, hm(t) = ej 2π

M (m−1)th0(t), and a similar property for

CC [mult./sample] Latency [samples]

OS/A lg+L−1
L log2 2(lg + L − 1) L − 1

SB M
D (lΓ + lh+lf

M + log2 M) dΓD + lf − 1

Table 1. Computational cost (CC) and latency for the OS/A
and subband (SB) methods.

f(t)), for which a numerically efficient algorithm exists [10].
We also assume that a k-point FFT can be implemented with
k
2 log2 k multiplications.

3. PROPOSED APPROXIMATION CRITERION

The goal is to find the filters h(q), f(q) and the subband model
Γ(q), for given values of lh, lf , lΓ, dΓ, M and D, that mini-
mize the power of the error signal ỹ(t) = y(t) − ŷ(t), when
x(t) has a given auto-correlation function rx(t). In this sec-
tion we express this problem as a minimization problem. To
this end, we transform the setting in Fig. 1 using the so-called
polyphase representation [11].

3.1. Polyphase Representation

Let x(t) be a scalar random process. The polyphase represen-
tation of x(t) is the vector random process x(t) satisfying

[x]d = φD
1−dx for each d ∈ {1, · · · , D},

where [x]d denotes the d-th entry of x(t) and (φD
e x)(t) =

x(tD + e). Also, let g(t) be the impulse response of an LTI
system g(q). The polyphase representation of g(q) is the D×
D transfer matrix G(q) whose impulse response satisfies

[G]d,e = φD
e−dg for each d, e ∈ {1, · · · , D}

Also, the polyphase representation of an analysis filterbank
with filters h(q) and downsampling factor D is the M × D
transfer matrix H(q) whose impulse response satisfies

[H]m,d = φD
d−1hm; m ∈ {1, · · · , M}, d ∈ {1, · · · , D} (1)

The polyphase representation of the synthesis filterbank f(q)
with upsampling factor D is the D×M transfer matrix F∗(q),
where F(q) is defined as in (1), and F∗(q) = F(q−1)∗, with
F(q−1)∗ being the transpose conjugate of F(q−1). If h(q) is
of Gabor type, and h0(q) is a causal FIR filter with tap size
lh, then its polyphase representation is given by [10]

H = WML2Λh0L1 (2)

where WM ∈ CM×M is the DFT matrix, i.e., [WM ]k,l =
M−1/2e−j 2π

M kl and

LT
1 = [ID, q−1ID, · · · , q−nD+1ID]:,1:lh

L2 = [IM , IM · · · , IM︸ ︷︷ ︸
nM times

]:,1:lh

Λh0 = diag{h0(0), · · · , h0(lh − 1)}



with nD =
⌈

lh
D

⌉
, nM =

⌈
lh
M

⌉
and [A]:,k:l denoting the matrix

formed with the columns from k to l of A. Also, for a vector
x, diag{x} denotes the diagonal matrix with elements [x]i in
its main diagonal.

By using the polyphase representation, the scheme in Fig. 1
can be represented by the LTI system shown in Fig. 2.

x(t) y(t)

ξ(t) θ̂(t) ŷ(t)

G(q)

Γ(q)H(q) F∗(q)

Fig. 2. Polyphase representation of the time-frequency sys-
tem approximation scheme.

3.2. Approximation as a Minimization Problem

Let G(t) be the impulse response of the polyphase represen-
tation of an LTI system, let x(t) and y(t) denote its input
and output, respectively, and let x(t) and y(t) denote their
polyphase representations. Then, it is straightforward to ver-
ify that

Ry = G ∗ Rx ∗ G∗

where ∗ denotes convolution of matrix sequences and Rv is
the auto-correlation function of the vector random process
v(t). It follows that

Sy = Tr{G ∗ Rx ∗G∗}(0)Sx (3)

where Sv is the power of the scalar random process v(t), and
for a B×B matrix sequence X(t), Tr{X}(t) =

∑B
i=1[X]i,i(t).

Hence, we define the following norm

‖G‖2
rx

= S−1
x Tr{G ∗ Rx ∗ G∗}(0)

which measures the power gainof the system when the input
has auto-correlation rx(t).

Let (CB×A)Z be the space of sequences of complex B×A

matrices indexed by Z. Let G ⊂ (CZ)M×M , H ⊂ (CZ)M×D

and F ⊂ (CZ)M×D be the subspaces of allowed subband
models, analysis and synthesis filterbank polyphase matrices,
respectively. Then, the system approximation problem can be
written as

(Γ,H,F) = arg min
Γ̃∈G,H̃∈H,F̃∈F

∥∥∥G − F̃∗ ∗ Γ̃ ∗ H̃
∥∥∥

rx

(4)

4. OPTIMIZATION ALGORITHM

The problem (4) is a non-linear least-squares optimization
problem, which we solve using the ALS method. More pre-
cisely, if we fix two of the elements in (Γ,H,F), the op-
timization of the third element is a linear optimization prob-
lem which can be solved using linear least-squares (LLS). The

ALS algorithm cyclically repeats these three steps. Below we
analyze each step separately. We define the following trans-
formations:

If X is a vector in (CZ)B×1, and m, n ∈ Z, then X =
seq2colm,n{X} is given by X = [XT

1 , · · · ,XT
B]T with Xi =

[[X]i(m), · · · , [X]i(n)]T .
If X is a matrix in (CZ)B×A, and n ∈ Z, then X =

convmatn{X} denotes the matrix X = [Xb,a ]B,A
b,a=1,1, with

each submatrix [Xb,a]i,j = X(i−j) for all i, j ∈ {1, · · · , n}.

If X,Y ∈ (CZ)B×A, then X � Y ∈ (CZ)B×A denotes
the entry-wise convolution, i.e., [X�Y]b,a = [X]b,a ∗ [Y]b,a.

Theorem 1 (Optimization of Γ) LetG ⊂ (CZ)M×M be the
subspace of diagonal matrix sequences with FIR filters of tap
sizelΓ anddΓ non-causal taps, on each diagonal entry, and
let mΓ = −dΓ andnΓ = lΓ − dΓ − 1. Then, the solution of
(4), for fixedH andF, is given by

Γ = diag{seq2col−1
mΓ,nΓ

{M†v}}
where

M = convmatnΓ−mΓ+1{φD
0 (h ∗ rx ∗ h∗) � φD

0 (f ∗ f∗)}
v = seq2colmΓ,nΓ

{diag−1{φD
0 (f ∗ g ∗ rx ∗ h∗)}}

Theorem 2 (Optimization of H) LetH ⊂ (CZ)M×D be the
subspace of polyphase representations of Gabor filterbanks
whose filters are causal and FIR with tap sizeslh. The solu-
tion of (4), for fixedΓ andF, is given by

H = WML2diag−1{M†v}L1

where

M = (A � CT )(0)
A = L∗

2W∗
MBWML2

B = (diag−1{Γ∗} ∗ diag−1(Γ)T ) � φD
0 (f ∗ f∗)

C = L1 ∗ Rx ∗ L∗
1

v = diag−1{L∗
2W∗

MΓ∗ ∗ φD
0 (f ∗ rx ∗ g) ∗ L∗

1}(0)

with L1, L2 andWM defined as in Section 3.1.

Theorem 3 (Optimization of F) LetF ⊂ (CZ)M×D be the
subspace of polyphase representations of Gabor filterbanks
whose filters are causal and FIR with tap sizeslf . The solu-
tion of (4), for fixedΓ andH, is given by

F = WML2diag−1{M†v}L1

where

M = (A � CT )(0)
A = L∗

2W∗
MBWML2

B = (diag−1{Γ} ∗ diag−1(Γ∗)T ) � φD
0 (h ∗ rx ∗ h∗)

C = L1 ∗ L∗
1

v = diag−1{L∗
2W∗

MΓ∗ ∗ φD
0 (f ∗ rx ∗ g) ∗ L∗

1}(0)



Azy=0, Ele=0 Azy=45, Ele=40
Left Right Left Right

OS/A -37.27dB -39.41dB -40.47dB -28.24dB
SB -38.67dB -38.22dB -39.58dB -30.23dB

Table 2. Approximation errors for the OS/A and subband
(SB) methods for two sound positions and both ears.

Initialization: The recursive method introduced above
requires an initialization. To this end, we choose the analy-
sis and synthesis filterbanks to be equal (i.e., f0=h0), and the
filters hm, m ∈ {1, · · · , M}, to be FIR approximations (in
a square sense) of ideal filterbanks whose frequency response
satisfy: (a) its support is contained in an interval of measure
2π/D, and (b) the union of all M supports cover the interval
[−π, π]. An example is shown in Fig. 3. As pointed out in [2],
this guarantees that the approximation error can be made ar-
bitrarily small with a diagonal subband model of sufficiently
large tap size.

2π
D

2π
M

− 2π
M

√
D

h0 h1hM−1

ω Angular freq.

Fig. 3. Ideal filterbank frequency response.

5. APPLICATION TO BINAURAL VIRTUAL
ACOUSTICS

The subband technique was used to optimize a binaural vir-
tual acoustics application. We processed an HRTF set of a
human subject which was measured at our facilities, using the
multiple exponential sweep method [12]. The HRTFs are 512
tap filters (measured at 48 kHz) for the left and right ear. We
compared the performance (in terms of CC and latency) of
the subband technique with that of the OS/A methods for two
representative sound positions: frontal (azimuth =0◦ and ele-
vation = 0◦) and lateral-elevated (azimuth = 45◦ and elevation
= 40◦). In virtual acoustics, the localization accuracy does not
significantly decreases when the HRIR are truncated to 5 ms.
(i.e., 240 taps) [13]. Hence, in order to compare both ap-
proaches, we choose lg = 240 for the OS/A methods, and we
design the subband method to achieve an approximation error
comparable to that introduced by the aforementioned trunca-
tion. To this end, we choose M = 7, D = 5, lh = lf = 15,
lΓ = 52 and dΓ = 0. The errors for both methods are shown
in Table 2.

According to Table 1, with this subband design we achieve
a delay of 14 taps (i.e., 0.3 ms.) and a computational cost of
82 multiplications per sample. If the same delay were to be

achieved with a OS/A method, we would require L = 15,
which would require 152 multiplications per sample. On the
other hand, to achieve a computational cost of 82 multiplica-
tions per sample, we would require L = 30, which would
introduce a latency of 29 taps (i.e., 0.6 ms.). Hence, we
conclude that the performance of the subband method almost
doubles that of the OS/A methods, i.e., it halves computations
for the same latency or halves latency for the same computa-
tional cost.
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