

Austrian Academy of Sciences Acoustics Research Institute

Comparison of 3D-Localization of Virtual Sound Sources between Normal-Hearing and Cochlear-Implant Listeners

Piotr Majdak, Bernhard Laback, Matt Goupell

http://www.kfs.oeaw.ac.at piotr@majdak.com

Institut für Schallforschung, Österreichische Akademie der Wissenschaften; A-1040 Wien, Wohllebengasse 12-14 Tel: +43 1/51581-2511 Fax: +43 1/51581-2530 email: piotr@majdak.com

Main Questions

- Ability to localize sound sources:
 - Polar:
 - Accuracy
 - Precision
 - Front / Back Confusions
 - Lateral:
 - Expect worse precision than NHs
 - Already studied by others
- Comparison between
 - NH and CI listeners
- Effects of training

ARI

3D-Sound Localization: NH vs. CI

	NH	CI
Frequency range:	up to 20 kHz	up to 8 kHz
Number of channels:	~3500 hair cells	up to 22 electrodes
Frequency resolution:	critical bandwidth	spread of excitation
Compression:	cochlear compression	amplitude mapping
Place of signal acquisition:	ear drum / ear canal entrance	behind the ear microphone

HRTF Measurements

- System identification method:
 - Multiple Exponential Sweep Method (Majdak et al. 2008)
 - NHs: entrance of the blocked-ear canal
 - CIs: mic-output of a behind-the-ear processor

HRTF Measurements

- Positions:
 - 1550 positions in total
 - Horizontal plane: 360°-range in 2.5° steps
 - Vertical plane: -30° to +80° in 5° steps
 - Subject's position controlled ($\pm 2.5 \text{ cm}; \pm 2.5^{\circ}$)
- Directional Transfer Functions (DTF)
 - Equipment equalization
 - Removing of the common transfer function (Diffuse-field equalization)
 - FIR-Filters with the length of 5.3 ms (256 taps)

Small differences for local elevation changes

- Small differences for local elevation changes
- Larger differences for different quadrants

Stimuli

- Virtual acoustic stimuli (VAS):
 - Gaussian white noise, duration of 500 ms
 - Presented via
 - Headphones (NH)
 - Line input of the processors (CI)
 - Sensation level of 50 dB
 - Level roving in the range of 5 dB (trial-to-trial)
- Tests in a dark sound chamber
 - (A-weighted SPL of the background noise: 18 dB)

Apparatus and Subjects

- Virtual Visual Environment (VE)
 - Presented via head mounted display (HMD):
 - Stereoscopic view, in color, without depth
 - Field of View: 32° x 24° (hor. x vert.)
 - Subject's position and orientation:
 - Tracked in real-time
 - Azimuth and elevation for the head (no movements)
 - Manual pointer as response
- Subjects:
 - 4 naïve NH listeners (no auditory deficits)
 - 4 naïve bilateral CI listeners (CIS+ [MED-EL] users)

Procedure

• Targets:

- 400 random positions per condition (out of possible 1550)
- Elevation: -30° to 80°, Azimuth: 360° range
- Test in blocks
- Procedure:
 - Procedural Training (until response error < 2°)
 - Localization Test (no feedback, 100 trials per block)
 - Localization Training (visually guided associative training, 50 trials per block)

Polar Results - Naïve Subjects

Polar Results – Training Progress

Polar Results – Training Progress

Polar Results – Group Data

- Cls worse than NHs and...
- … not better than chance?

Polar Results – Without Cl8

- Polar:
 - 3 CIs worse than NHs but better than chance!
 - CI8 performed at chance

Polar Results – Effect of Roving?

- 2 subjects tested with higher roving (10 dB range)
- No systematic changes

Lateral Results - Naïve Subjects

Cl

Lateral Results – Group Data

- Lateral Precision:
 - CIs worse than NHs and much better than chance

- Training (300 trials) is necessary:
 - Strong training effects within first tens of trials
 - Almost no further training effects over hundreds of trials
- Lateral:
 - Precision of CI worse than NH listeners:
 - Cl: 25° precision
 - NH: 15° precision
 - Already investigated by others
 - Tyler et al. (2002); van Hoesel et al. (2002); van Hoesel & Tyler (2003); Nopp et al. (2004); van Hoesel (2004); Schoen et al. (2005); Seeber et al. (2002, 2008)

Summary

- Polar:
 - One CI listener performed at chance

precision: 60° f/b confusions: 30 %

- Three CI listeners were better than chance and worse than NH listeners:
 - Cl: 43° precision, 22 % f/b confusions
 - NH: 30° precision, 12 % f/b confusions
- At least one CI listener mainly relied on spectral cues
 - 5 dB roving range: 41° precision, 20 % f/b confusions
 - 10 dB roving range: 46° precision, 21 % f/b confusions
- Spectral cues:
 - Measurable for current CI systems
 - Perceptually usable for front/back discrimination

Outlook

- Can we do better?
 - Get more spectral cues
 - Place microphones into the ear canal
 - Improve the stimulation strategy:
 - Extend the frequency range
 - Change the frequency-to-place mapping (Goupell et al., 2008)
 - Contrast spectral cues according to subjects' spectral profiling ability (Goupell et al. under review)

