

Austrian Academy of Sciences Acoustics Research Institute

The Accuracy of Localizing Virtual Sound Sources: Effects of Pointing Method and Visual Environment

Piotr Majdak, Bernhard Laback, Matt Goupell, Michael Mihocic http://www.kfs.oeaw.ac.at piotr@majdak.com

Institut für Schallforschung, Österreichische Akademie der Wissenschaften; A-1040 Wien, Wohllebengasse 12-14 Tel: +43 1/51581-2511 Fax: +43 1/51581-2530 email: piotr@majdak.com

Requirements for a "Good" Localization Method

- All positions allowed
- High accuracy in all directions
- No interaction with a response method
- Comfortable for the subjects
- Short familiarization time
- Extendable to a learning procedure

Error

Blur

Response Methods

- Haber et al. (1993):
 - Pointing with:
 - Nose
 - Shoulder
 - Finger
 - Cane or short stick
 - Rotating dial:
 - Mounted on a table
 - Attached to the subject
 - Drawing a line
 - Verbal (clockface system)
 - Blind subjects!

Effects of the Response Methods

- Head Pointing:
 - Very spontaneous response
 - Visual reference frame close to the acoustic reference frame
 - Comparison to the literature (Middlebrooks, 1999)
- Manual (hand) Pointing:
 - Very intuitive for responses in the range of 360°
 - Better hand is better than head (Pinek & Brouchon, 1992)
 - No underestimation of top positions (Djelani et al., 2000)
 - Trained daily in social interactions

Effects of Visual Feedback

- Indications for importance of visual feedback:
 - Berkinblit et al (1995): Finger pointing with vision better
 - Redon and Hay (2005): better with a structured background
 - Lewald et al (2000): head pointer blind: overestimation of positions; with vision: better
 - Zahorik (2006): fast decrease of acoustic front/back confusions using visual feedback
- No study about visual feedback and virtual acoustic stimuli with individualized HRTFs

Hypotheses and Conditions

- Hypotheses:
 - Higher accuracy using visual feedback
 - Higher errors for extreme positions using head pointer
 - Longer familiarization period using manual pointer
- Variable "Visual Environment" (VE):
 - Dark: in darkness, without any visual cue
 - HMD: with VE presented via head mounted display
- Variable "Pointer":
 - Head pointer: pointing with the head/nose
 - Manual pointer: pointing with a gun

Virtual Visual Environment (VE)

- Presented via head mounted display (HMD):
 - Stereoscopic view, in color, without depth
 - Field of View: 32° x 24° (hor. x vert.)
- Subject's position and orientation:
 - Tracked in real-time
 - Azimuth and elevation for the head (no movements)
 - Five degrees of freedom for the hand pointer (no roll)
- Tests in a dark sound chamber (A-weighted SPL of the background noise: 18 dB)

Platform

- Diameter: 0.8 m
- Supports comfortable 360°-turns
- Head and pointer position and orientation tracked in real-time

ARI

Virtual VE: Outside-of-the-box View

Virtual VE: First-person View

ARI

HRTF Measurements

- System identification method:
 - Multiple Exponential Sweep Method (Majdak et al. 2008)
 - Measured at the entrance of the blocked-ear canal
- Positions:
 - Horizontal plane: -180° to 180°, in 2.5° steps
 - Vertical plane: -30° to +80° in 5° steps
 - 1550 positions in total
 - Subject's position controlled ($\pm 2.5 \text{ cm}; \pm 2.5^{\circ}$)
- Directional Transfer Functions (DTF)

Targets and Subjects

• Targets:

- 400 random positions per condition (out of possible 1550)
- Subjects cannot build-up a mental map of the spatial positions (Butler et al. 1990; Hammershoi and Sadvad, 1994; Perret and Noble, 1995)
- Statistical analysis easy by having a well-defined distribution (ANOVA)
- Subjects:
 - 10 naïve, right-handed subjects
 - Normal or corrected-to-normal vision
 - No auditory deficits

Experiments

- Visual Training:
 - Familiarization with equipment and procedure
 - Improving the degree of immersion in the VE
 - Reducing differences in experience across the subject
- Visual Test
 - Test the response accuracy with visual targets
- Acoustic Test:
 - Test the localization ability to virtual acoustic stimuli
 - No feedback provided

Visual Training: Method

Visual Training: Method

Visual Training: Results

• Training until:

- Hit rate of > 95% in one block of 100 targets
- Distance error of < 2° in any direction

Visual Test

- Visual target only
- Presentation duration: 700 ms

ART

Visual Test: Results

• Head pointer:

RI

Visual Test: Results

• Manual pointer:

Visual Test: Statistics

Bias

				_
Error	Head	Manual	p-value	
Azimuth bias	0°	0.96°	0.034	
RMS azimuth error	10,1°	9.44°	0.034	Bias
Elevation bias	0.9°	-0.1°	<0.001	
RMS elevation error	8°	7.4°	0.005	Gerroi
			1	RNIS

- Small differences only
- Horizontal precision of about 10°
- Vertical precision of about 8°

Acoustic Test: Methods

- Virtual acoustic stimuli (VAS):
 - Gaussian white noise, duration: 500 ms
 - Filtered with individualized DTFs
 - Presented via headphones
- Level:
 - Comfortable level of 50 dB SL
 - Hearing threshold: manual "one-up-two-down" procedure resulting in a 73%-threshold for the VAS at the frontal position (0°; 0°)
 - Level roving in the range of 5 dB (trial-to-trial)
- Procedure: similar to the visual test

Acoustic Test: Results

• Dark, Head pointer

Acoustic Test: Results

• HMD, Manual pointer

Acoustic Test: Statistics

				I	
	Head Dark	Head, HMD	Manual, HMD	Manual, Dark	
RMS lateral error	15.9°	13.3°	13.5°	16.7°	
Lateral bias	6.5°	4.9°	5.5°	6.4°	
quadrant errors, front (%)	30.3 %	26.2 %	23.1 %	30.2 %	
quadrant errors, back (%)	15.6 %	15.6 %	14.4 %	14.4 %	
Raw RMS polar error	52.5°	51.7°	48.2°	52.5°	
Corrected RMS polar error	32.3°	30.5°	30.5°	32.3°	

• Statistical analysis (RM ANOVA):

- Visual environment: with HMD better (p < 0.004)
- Head pointer: better in the horizontal plane (p < 0.02)
- Manual pointer:
 - better precision in the vertical plane (p < 0.047) with HMD
 - less front/back confusions for rear-upper sounds (p = 0.032)

Summary: Visual

- Procedural training requires at least 600 targets:
 - Precision of 2° is possible
 - Shorter training period for head pointer
 - After 700 targets no differences between pointing methods
- Visual test:
 - Precision of 7° to 10° is possible
 - Head pointer: better in the horizontal plane
 - Manual pointer: better in the vertical plane

Summary: Acoustic

- Effect of the visual environment:
 - Smaller errors with visual environment
 - Limitations not because of visual deficits
- Effect of the pointing method:
 - Very small effect only
 - Head pointer: better in the horizontal plane
 - Manual pointer: sometimes better in the vertical plane
- However:

Errors higher than comparable literature probably...
...because the listeners were not trained or selected!