The Accuracy of Localizing Virtual Sound Sources: Effects of Pointing Method and Visual Environment

Piotr Majdak, Bernhard Laback, Matt Goupell, Michael Mihocic
http://www.kfs.oeaw.ac.at
piotr@majdak.com
Requirements for a “Good” Localization Method

- All positions allowed
- High accuracy in all directions
- No interaction with a response method
- Comfortable for the subjects
- Short familiarization time
- Extendable to a learning procedure
Response Methods

• Haber et al. (1993):
 - Pointing with:
 • Nose
 • Shoulder
 • Finger
 • Cane or short stick
 - Rotating dial:
 • Mounted on a table
 • Attached to the subject
 - Drawing a line
 - Verbal (clockface system)
 - Blind subjects!
Effects of the Response Methods

• Head Pointing:
 – Very spontaneous response
 – Visual reference frame close to the acoustic reference frame
 – Comparison to the literature (Middlebrooks, 1999)

• Manual (hand) Pointing:
 – Very intuitive for responses in the range of 360°
 – Better hand is better than head (Pinek & Brouchon, 1992)
 – No underestimation of top positions (Djelani et al., 2000)
 – Trained daily in social interactions
Effects of Visual Feedback

• Indications for importance of visual feedback:
 – Redon and Hay (2005): better with a structured background

• **No** study about visual feedback and virtual acoustic stimuli with individualized HRTFs
Hypotheses and Conditions

• Hypotheses:
 – Higher accuracy using visual feedback
 – Higher errors for extreme positions using head pointer
 – Longer familiarization period using manual pointer

• Variable „Visual Environment“ (VE):
 – Dark: in darkness, without any visual cue
 – HMD: with VE presented via head mounted display

• Variable „Pointer“:
 – Head pointer: pointing with the head/nose
 – Manual pointer: pointing with a gun
Virtual Visual Environment (VE)

• Presented via head mounted display (HMD):
 – Stereoscopic view, in color, **without depth**
 – Field of View: $32^\circ \times 24^\circ$ (hor. x vert.)

• Subject's position and orientation:
 – Tracked in real-time
 – Azimuth and elevation for the head (no movements)
 – Five degrees of freedom for the hand pointer (no roll)

• Tests in a dark sound chamber (**A-weighted SPL of the background noise: 18 dB**)
Platform

- Diameter: 0.8 m
- Supports comfortable 360°-turns
- Head and pointer position and orientation tracked in real-time
Platform
Virtual VE: Outside-of-the-box View
Virtual VE: First-person View
Visual Cues

Richtung zeigen
HRTF Measurements

• System identification method:
 – Multiple Exponential Sweep Method (Majdak et al. 2008)
 – Measured at the entrance of the blocked-ear canal

• Positions:
 – Horizontal plane: -180° to 180°, in 2.5° steps
 – Vertical plane: -30° to +80° in 5° steps
 – 1550 positions in total
 – Subject's position controlled (± 2.5 cm; ± 2.5°)

• Directional Transfer Functions (DTF)
Targets and Subjects

- **Targets:**
 - 400 random positions per condition (out of possible 1550)
 - Subjects cannot build-up a mental map of the spatial positions (Butler et al. 1990; Hammershøi and Sad vad, 1994; Perret and Noble, 1995)
 - Statistical analysis easy by having a well-defined distribution (ANOVA)

- **Subjects:**
 - 10 naïve, right-handed subjects
 - Normal or corrected-to-normal vision
 - No auditory deficits
Experiments

• Visual Training:
 – Familiarization with equipment and procedure
 – Improving the degree of immersion in the VE
 – Reducing differences in experience across the subject

• Visual Test
 – Test the response accuracy with visual targets

• Acoustic Test:
 – Test the localization ability to virtual acoustic stimuli
 – No feedback provided
Visual Training: Method

Game over! Hit rate: 100%
Visual Training: Method

Richtung zeigen
Visual Training: Results

- Training until:
 - Hit rate of > 95% in one block of 100 targets
 - Distance error of < 2° in any direction
Visual Test

- Visual target **only**
- Presentation duration: 700 ms

Game over! Hit rate: 100%
Visual Test: Results

- Head pointer:

- LATERAL
 MS, H
 rms = 10.64°
 bias = -1.29°

- POLAR
 MS, H
 rms = 14.08°
 bias = -3.25°
 #valid: 242
Visual Test: Results

- Manual pointer:

![Lateral and Polar Graphs](image-url)
Visual Test: Statistics

<table>
<thead>
<tr>
<th>Error</th>
<th>Head</th>
<th>Manual</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azimuth bias</td>
<td>0°</td>
<td>0.96°</td>
<td>0.034</td>
</tr>
<tr>
<td>RMS azimuth error</td>
<td>10.1°</td>
<td>9.44°</td>
<td>0.034</td>
</tr>
<tr>
<td>Elevation bias</td>
<td>0.9°</td>
<td>-0.1°</td>
<td><0.001</td>
</tr>
<tr>
<td>RMS elevation error</td>
<td>8°</td>
<td>7.4°</td>
<td>0.005</td>
</tr>
</tbody>
</table>

- Small differences only
- Horizontal precision of about 10°
- Vertical precision of about 8°
Acoustic Test: Methods

- Virtual acoustic stimuli (VAS):
 - Gaussian white noise, duration: 500 ms
 - Filtered with individualized DTFs
 - Presented via headphones

- Level:
 - Comfortable level of 50 dB SL
 - Hearing threshold: manual „one-up-two-down“ procedure resulting in a 73%-threshold for the VAS at the frontal position (0°; 0°)
 - Level roving in the range of 5 dB (trial-to-trial)

- Procedure: similar to the visual test
Acoustic Test: Results

- Dark, Head pointer

LATERAL
WK, Dark, M
$rms = 19.29^\circ$
$bias = 8.19^\circ$

POLAR
WK, Dark, M
$rms = 34.4^\circ$
$bias = 24.92^\circ$
$QE = 20.4\%$
#valid: 328
Acoustic Test: Results

- HMD, Manual pointer

LATERAL
WK, HMD, M
rms = 11.57°
bias = -1.2°

POLAR
WK, HMD, M
rms = 28.31°
bias = 16.18°
QE = 6.48%
#valid: 324°
Acoustic Test: Statistics

<table>
<thead>
<tr>
<th></th>
<th>Head Dark</th>
<th>Head, HMD</th>
<th>Manual, HMD</th>
<th>Manual, Dark</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS lateral error</td>
<td>15.9°</td>
<td>13.3°</td>
<td>13.5°</td>
<td>16.7°</td>
</tr>
<tr>
<td>Lateral bias</td>
<td>6.5°</td>
<td>4.9°</td>
<td>5.5°</td>
<td>6.4°</td>
</tr>
<tr>
<td>quadrant errors, front (%)</td>
<td>30.3 %</td>
<td>26.2 %</td>
<td>23.1 %</td>
<td>30.2 %</td>
</tr>
<tr>
<td>quadrant errors, back (%)</td>
<td>15.6 %</td>
<td>15.6 %</td>
<td>14.4 %</td>
<td>14.4 %</td>
</tr>
<tr>
<td>Raw RMS polar error</td>
<td>52.5°</td>
<td>51.7°</td>
<td>48.2°</td>
<td>52.5°</td>
</tr>
<tr>
<td>Corrected RMS polar error</td>
<td>32.3°</td>
<td>30.5°</td>
<td>30.5°</td>
<td>32.3°</td>
</tr>
</tbody>
</table>

- **Statistical analysis (RM ANOVA):**
 - Visual environment: with HMD better \((p < 0.004)\)
 - Head pointer: better in the horizontal plane \((p < 0.02)\)
 - Manual pointer:
 - better precision in the vertical plane \((p < 0.047)\) with HMD
 - less front/back confusions for rear-upper sounds \((p = 0.032)\)
Summary: Visual

- Procedural training requires at least 600 targets:
 - Precision of 2° is possible
 - Shorter training period for head pointer
 - After 700 targets no differences between pointing methods

- Visual test:
 - Precision of 7° to 10° is possible
 - Head pointer: better in the horizontal plane
 - Manual pointer: better in the vertical plane
Summary: Acoustic

- Effect of the visual environment:
 - Smaller errors with visual environment
 - Limitations not because of visual deficits

- Effect of the pointing method:
 - Very small effect only
 - Head pointer: better in the horizontal plane
 - Manual pointer: sometimes better in the vertical plane

- However:
 - Errors higher than comparable literature probably...
 ...because the listeners were not trained or selected!