

Austrian Academy of Sciences Acoustics Research Institute

Effects of Interaural Time Difference in the Temporal Fine Structure

Bernhard Laback¹, Piotr Majdak¹ Wolf-Dieter Baumgartner²

¹ Acoustics Research Institute, Austrian Academy of Sciences ² ENT-department, Vienna University Hospital, Austria

> CIAP 2007, Lake Tahoe July, 2007

Bernhard.Laback@oeaw.ac.at

http://www.kfs.oeaw.ac.at

Institut für Schallforschung, Österreichische Akademie der Wissenschaften A-1040 Wien, Wohllebengasse 12-14 Tel: +43 1/4277-29514 Fax: +43 1 51581 2530

Overview

PART I

- Two studies on Fine Structure ITD Sensitivity of CI Listeners
 - <u>Four-Pulse Sequences</u>: ITD in Ongoing and Gating Signal Portions
 - <u>Modulated Pulse Trains</u>: ITD in Fine Structure and Ongoing Envelope

PART II

Binaural Jitter Improves ITD Sensitivity in Electric Hearing

Interaural Time Differences (ITD)

Sound Source

Interaural Time Differences (ITD) occur in

- Gating portions (ITD_{ON} / ITD_{OFF})
- Temporal fine structure (ITD_{FS})
- Ongoing envelope (ITD_{ENV})

Motivation

Fine structure ITD is important for

- Lateralizing sound sources (Wightman and Kistler, 1992; Smith et al., 2002)
- Speech understanding in noise (Nie et. al., 2005; Zeng et al., 2005)
- Bilateral CI listeners are often sensitive to whole-waveform ITD (e.g. van Hoesel and Tyler, 2003)
 - Open Questions:
 - Are CI listeners sensitive to ITD in the fine structure?
 - What is the contribution of gating ITD and ongoing envelope ITD?

Left/Right Discrimination of ITD in Ongoing and Gating Signal Portions: <u>Four-Pulse Sequences</u>

Laback, Majdak, and Baumgartner (2007) JASA 121, 2182-2191

Methods I

≻Stimuli

- -Four biphasic pulses
- Presented at a single interaural electrode pair (pitch-matched and loudness-balanced)

➢ITD conditions (see right side)

Methods II

➢Subjects

- Four bilateral CI listeners (C40+, MED-EL)

➢Independent Variables

- ITD condition
- Pulse Rate (100 800 pps)

➢JNDs for Left/Right Discrimination

Pulse Rate (pulses per second, pps)

Expectations

Pulse Rate (pulses per second, pps)

Pulse Rate (pulses per second, pps)

Conclusions of Study I

- CI listeners are sensitive to ongoing fine structure ITD in four-pulse sequences
- Highest rate showing fine structure ITD sensitivity varies between listeners (100 to 800 pps)
- Contribution of onset ITD increases with pulse rate
- Monaural cues not perceptible (tested in separate experiment)

Left/Right Discrimination of ITD in Fine Structure and Ongoing Envelope: <u>Modulated pulse trains</u>

Majdak, Laback, and Baumgartner (2006) JASA 120, 2190-2201

Methods

Stimuli

- Amplitude modulated pulse trains
 - Duration: 300 ms
 - Modulation frequency: 13 Hz

Subjects

- Four bilateral CI listeners (C40+, MED-EL)

Independent variables

- ITD_{FS} : 0 ... IPI (inter-pulse interval)
- ITD_{ENV}: 0 ... 800 μs
- Pulse rate: 100 ... 1600 pps

Sample Results for Lower Pulse Rates I

Sample Results for Lower Pulse Rates II

OAW

OAW

Sample Results for Higher Pulse Rates

Sensitivity to Fine Structure ITD

Pulse rate	CI1	CI2	CI3	CI8
100		< 0.001	-	-
150		< 0.001	-	-
200	< 0.001	0.01	-	-
400	0.75	0.21	< 0.001	< 0.001
600	-	-	-	-
800	I	I	<0.001	<0.001
938	_	_	-	0.45
1600	0.46	-	0.11	-

Conclusions of Study II

Sensitivity to ITD_{FS} (in 2 of 4 subjects up to 800 pps)

>Low sensitivity to ITD_{ENV} (low modulation rate used)

➢High inter-subject variability of performance

Overall Conclusions from both studies

- CI listeners are likely to benefit from encoding fine structure
 ITD at low pulse rates
- The rate limit for fine structure ITD sensitivity is lower than the 1500 Hz limit in acoustic hearing with sinusoids (Zwislocki and Feldman,

1956; Klumpp and Eady, 1956)

How can we overcome this limitation?

<u>PART II</u> Improving ITD sensitivity in electric hearing

NH literature

- ITD sensitivity degrades with increasing modulation rate of high-frequency carrier signals (Hafter and Dye, 1983; Bernstein and Trahoitis, 2002)
- For high modulation rates increasing stimulus duration does NOT improve ITD sensitivity (Hafter and Dye, 1983; Buell and Hafter, 1988)
- <u>Binaural adaptation</u> occurs: only onset is necessary (Saberi, 1996; Stecker and Hafter, 2002)
- Introducing a change (trigger) in the stimulus causes recovery from binaural adaptation (Hafter and Buell, 1990; Stecker and Hafter, 2002)

Hypotheses

- CI listeners are experiencing a strong form of binaural adaptation at higher pulse rates, causing the rate limitation for fine structure ITD
- A purely temporal change causes a recovery from binaural adaptation
- If we can introduce an ongoing trigger without affecting the ITD information, we will improve ITD sensitivity

Stimuli to Test the Hypotheses

Interpulse-interval (IPI) is random, but binaurally synchronized

ITD is constant

Stimulus Parameters

- Interaurally pitch-matched electrode pair
- Jitter follows rectangular distribution
 - k defines width of distribution relative to IPI
 - k = 0: periodic condition ... k = 1: maximum jitter
- k = 0, 0.125, 0.25, 0.5, 0.75, 0.9
- ITD = 100, 200, 400, 600 µs
- Pulse Rate = 400, 800, 938, 1182, and 1515 pps
- Current levels adjusted at each rate to obtain a centralized image at a comfortable level

nter pulse Interva

- Duration = 300 ms
- Amplitude modulation: 13 Hz

Subjects and Procedure

- 5 Listeners (C40+, MED-EL)
- Two-interval left/right discrimination
- 100 repetitions per condition

Results averaged over 5 listeners and ITDs (200, 400, and 600 µs)

Analysis of Effects

- At 400 pps
 - $-P_c$ generally high
 - No difference between binaurally-jittered and period condition
- At rates > 400 pps
 - Periodic condition: P_c decreases sharply with increasing pulse rate (p = 0.00002)
 - Binaurally-jittered condition: Large improvements relative to periodic condition
 - Large Jitter (*k* = 0.75, 0.9): *p* < 0.000001
 - Small Jitter (*k* = 0.125, 0.25, 0.5): *p* = 0.0005
 - Large Jitter: P_c constant up to 1182 pps; decline at 1515 pps, but still significantly above periodic condition (p = 0.006)

Interpretation of Results

- <u>Periodic condition</u>: Decrease with increasing rate consistent with previous studies (van Hoesel and Tyler, 2003; Majdak et al., 2006; Laback et al., 2007)
 - ⇒ At 400 pps performance is high: thus, if binaural adaptation hypothesis is true, no improvement by jitter can be expected
- <u>Binaurally-jittered condition</u>: Makes CI listeners sensitive to fine structure ITD at rates up to 1515 pps (comparable to NHs)
 - ⇒ Indication for <u>recovery from strong form of binaural</u> <u>adaptation</u>

Explanation in terms of Binaural Adaptation

- Assuming that excessive form of binaural adaptation is indeed the reason for the rate limitation (periodic condition), why could it occur?
 - High degree of phase locking and across-fiber synchrony in electric stimulation (e.g. Abbas, 1993; Dynes and Delgutte, 1992; Litvak et al., 2001).
- Artificial temporal variation may circumvent this and consequently avoid binaural adaptation

Monaural Explanation?

 Jitter may cause better neural representation of temporal information by causing stochastic responses (e.g. Rubinstein et al., 1999; Zeng et al., 2000)

 \Rightarrow Jitter should also improve rate pitch perception

- Chen et al. (2005) studied the effect of jitter on monaural pitch perception
 - Tested <u>only small jitter</u> and found <u>no effect</u> besides a deterioration at low rates
 - Did not test larger jitter for which we found largest improvements
 - However, larger jitter would most likely smear the pitch cue
- Thus, recovery in our experiment is most likely a binaural effect, not a monaural

Average Results for Rates \geq 800 pps (where periodic condition has low P_c)

Analysis & Interpretation

- Periodic condition: P_c constantly low across ITD values
- Binaurally-Jittered condition:
 - $-P_c$ increases with ITD

- Maximum Improvement of 28% for large jitter (p < 0.00001) and 14% for small jitter (p = 0.007)
- Intriguing finding: Binaural jitter improves P_c even for ITDs with ambiguous fine structure cues
 - <u>Example</u>: ITD = 400 µs is within $\frac{1}{4}$ to $\frac{3}{4}$ of IPI at all rates from 800 to 1515 pps, and still jitter improves P_c (p = 0.0001)
 - Possible explanation: Auditory system picks out pulse pairs with large IPIs (multiple looks model, Viemeister and Wakefield, 1991)

Summary & Conclusions

- Observed dramatic improvement of P_c by introducing binaurally-synchronized jitter in electric hearing strongly suggests:
 - Rate limitation for ITD perception is at least partly due to binaural adaptation
 - Purely temporal trigger causes recovery from binaural adaptation
- Binaural jitter removes pulse rate limitation, allowing ITD perception at much higher rates
- Advantage for localizing sounds and speech perception in noise with fine structure coding strategies

Acknowledgements

Many thanks to

- Our listeners for their patience
- The Austrian Academy of Sciences for funding the project

Individual Subjects' Results

OAW

