

Austrian Academy of Sciences

Acoustic Research Institute – ARI

System Identification in Audio Engineering

P. Majdak piotr@majdak.com

> Institut für Schallforschung, Österreichische Akademie der Wissenschaften; A-1010 Wien, Reichsratsstrasse 17 Tel: +43 1/4277-29511 Fax: +43 1/4277-9295 email: piotr@majdak.com

Devices Under Test (DUT):

- Acoustical systems
 - Buildings, concert halls, rooms, chambers
 - Acoustical elements: absorber, reflectors
 - (Sound generators: musical instruments, engines)
- Electro-acoustic systems
 - Speakers
 - Microphones
- DUT in general: Linear, Time Invariant Systems (LTI)

AAS-ART

LTI-Systems

- Time Invariance: $T\{x(t)\}=T\{x(t-T)\}=y(t)$
 - In praxis: a priori knowledge is essential:
 - estimation of time constants
 - repetition after decay of internal energy
 - For nearly time variant systems:
 - short measurement time slot
 - measurement at steady state
- Additional problem: Noise
 - internal noise in measurement equipment
 - internal noise in DUT

Measurement path

• Devices:

• Symbolic:

Parameters

- Transfer Function
 - Spectrum $\underline{H}(f)$, $\underline{H}(k)$
 - Impulse Response h(t), h(n)
 - Finite (FIR), Infinite (IIR)
 - Pole-Zero-Diagram
- Signal-To-Noise-Ratio: $SNR = 20 \log_{10}$

 \checkmark

$$\left(\frac{y_i(n)}{u(n)}\right)$$

$$E_{signal} \rightarrow max$$

$$\xrightarrow{} A_{RMS} \rightarrow A$$
$$\xrightarrow{} \hat{A} / A_{RMS} \rightarrow 1$$

Minimize the crest factor!

Parameters - Total Harmonic Distortion

Parameters - Intermodulation Distortions

Direct Measurement Method

• Direct measurement of amplitude and phase:

- Simple procedure (Stepped Sine)
- Measurement in steady state!!!
 - Long duration for high frequency resolution
- High SNR (crest factor: $\sqrt{2}$)
- Improvement: Time Delay Spectrometry

Time Delay Spectrometry

- Signal: Linear Sweep $x(t) = \cos(\omega_0 t)$
- **Response:** $y(t) = |H(\omega_0)| \cos[\omega_0 t + \varphi(\omega_0)]$

- $y(t) = |H(\omega_0)| \{\cos(\omega_0 t) \cos[\varphi(\omega_0)] \sin(\omega_0 t) \sin[\varphi(\omega_0)]\}$
- Demodulation $\frac{1}{2}[1+\cos(2\omega_0 t)]\cdot\cos[\varphi(\omega)]$ and LP-Filtering:

$$y_{R}(t) = \frac{1}{2} |H(\omega_{0})| \cos[\varphi(\omega_{0})] \qquad y_{I}(t) = \frac{1}{2} |H(\omega_{0})| \sin[\varphi(\omega_{0})]$$

Impulse Excitation

- Signal: unit pulse with amplitude A
 - Impulse response immediately available
 - Little energy in the excitation signal: $E_{signal} = A^2$
 - High crest factor: $A/A_{RMS} = A \cdot N$ ---- low SNR
- Averaging necessary:
 - Periodic Impulse Excitation (PIE)
 - doubling the no. of pulses: +3dB SNR

AAS-ART

1- or 2-channel FFT

- Signal: white noise:
 - Amplitude spectrum: DC=0, the rest=1
 - Phase spectrum: random (equal distributed)
 - Signal: random, gaussian distribution

- Crest factor: • Example: fs=48kHz, T=1.5s - 72000 samples • Averaging necessary • Averaging necessary • Averaging necessary		Crest Factor	Probability
 Example: fs=48kHz, T=1.5s 	– Crest factor:	1	32,00%
• Example: $fs=48kHz$, $I=1.5s$ $\rightarrow 72000 \text{ samples}$ • Averaging necessary • Averaging necessary		2	4,80%
 ► 72000 samples Averaging necessary Averaging necessary A 4 10 ppm 	 Example: fs=48kHz, 1=1.5s 	3	0,37%
 Averaging necessary Averaging necessary At 10 ppm 		3,3	0,10%
• Averaging necessary	→ 72000 samples	3,9	0,01%
		4	63 ppm
	 Averaging necessary 	4,4	10 ppm

- 1-channel-FFT: for amplitude spectrum only
- 2-channel-FFT: for total transfer function

2-channel FFT

Identification of amplitude and phase spectrum:

Pseudo Random Sequences

• From the system theory:

 $r_{xy}(n) = h(n) * r_{xx}(n)$

- White noise decorrelated signal: $r_{xx}(n) = \delta(n)$
- With a decorrelated signal: $r_{xy}(n) = h(n)$
 - Substitution: white noise —> decorrelated signal
 - Wanted:
 - decorrelated signal
 - determinist
 - crest factor of 1

 binary pseudo random sequences

Maximum Length Sequence (MLS)

- Generation:
 - N shift registers
 - feedback with EX-OR
- Length of sequence: $L=2^N-1$
- Autocorrelation:

$$r_{xx}(n) = \delta(n) - \frac{1}{L+1}$$

• Unit pulse with a little offset

MLS

Calculation of the IR:

MLS

- AC-Coupling: $r_{xy}(n) = h(n)$
- **DC-Coupling**: $r_{xy}(n) \simeq h(n) DC$
- Calculation of the cross-correlation:
 - frequency domain: FT (not FFT!)
 - direct method: $r_{xy}(n) = \frac{1}{L+1} \sum_{i=0}^{L-1} x([i-n] \mod L) \cdot y(i)$
 - Signal as a matrix:
 - create a circular matrix X from x(n)

Calculation:
$$r_{xy} = \frac{1}{L+1} X \cdot y$$

Hadamard

I ransformation

- Algorithmus ähnlich der DFT: $X(k) = \mathscr{F} \cdot x(n)$
- Matrix-Operator: Hadamard-Matrix:

$$H_{1} = \begin{bmatrix} 1 \end{bmatrix} \qquad H_{2} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$H_{2^{n+1}} = \begin{bmatrix} H_{2^{n}} & H_{2^{n}} \\ H_{2^{n}} & -H_{2^{n}} \end{bmatrix} = H_{2^{n}} * H_{2^{n}}$$

- Butterfly, aber kein Bit-reversal
- nur Additionen/Subtraktionen

- MLS ist keine Hadamard-Matrix
- Umformung Hadamard-Matrix zur MLS-Matrix:

AAS-ART

System Identification with MLS

- Length of MLS:
 - at least the length of the expected IR
- SNR:
 - crest factor: 1 best SNR we can get!
 - $-10\log(L+1)$ higher than PIE
 - fs=48kHz, T=0.7s: → SNR gain: +45dB
 - → doubling PIE length 15 times
 - → measurement time with PIE: 9 hours
- Averaging of time variations
- Very sensitive to nonlinear distortions

Sensitivity of MLS on distortions

- System:
 LP-Filter, f_c=1kHz
- System output:
- IR of filter:

Dunn & Hawksford (1993)

Sensitivity of MLS on distortions

System identification procedure with MLS

• Immunity against noise:

 $\Delta I_n = \Delta A$

 Immunity against distortions:

 $\varDelta I_d \!=\! -(r\!-\!1) \!\cdot \! \varDelta A$

 Depending on system: optimal excitation amplitude

 Increase MLS order instead of length doubling

Dunn & Hawksford (1993)

• **IRS**:

Inverse Repeated Sequence (IRS)

- Canceling distortions for even orders: x(n+L)=-x(n)
 - $x(n) = \begin{cases} m(n), & n even, 0 \le n < 2L \\ -m(n), & n odd, 0 \le n < 2L \end{cases}$

m(n) ... MLS

$$r_{xy} = \frac{1}{2(L+1)} \sum_{k=0}^{2} L - 1 x(n) x(n+k)$$

$$= \begin{cases} r_{my}(n), & n even \\ -r_{my}(n), & n odd \end{cases}$$

$$= \delta(n) - \frac{(-1)^n}{L+1} - \delta(n-L) \qquad 0 \le n < 2L$$

Comparison: PIE, MLS, IRS

• Distortion Immunity:

Filter: LP f = 1kHz Distortion: -20dB Length: 2047 samples

			and the second sec
Distortion Order	PIE Distortion Immunity (dB)	MLS Distortion Immunity (dB)	IRS Distortion Immunity (dB)
2	54.7	29.4	>262
3	77.2	35.4	36.6
4	99.7	35.9	>265
5	123	38.4	41.4
6	146	39.7	>267
- 7	169	41.4	46.2

Dunn & Hawksford (1993)

Noise Immunity (normalized to distortion immunity):

Distortion Order	Distortion Immunity (dB)	Relative MLS Excitation Amplitude (dB)	MLS Noise Immunity Advantage (dB)
2	54.7	-25.3	7.8
3	77.2	-20.9	12.2
4	99.7	-21.3	11.8
5	123	-21.2	11.9
6	146	-21.3	11.8
7	169	-21.3	11.8

Dunn & Hawksford (1993)

Improving Distortion Immunity

- Problems of MLS:
 - Sensitivity to distortions
- What we want:
 - Identification of the linear part
 - All harmonics separated
- Solution:

- Exponential sweep: $x(t) = \sin \left[A \left(e^{t/\tau} - 1 \right) \right]$ $A = \frac{T \omega_1}{\ln \left(\omega_2 / \omega_1 \right)}$ $\tau = \frac{T}{\ln \left(\omega_2 / \omega_1 \right)}$ $\tau = \frac{T}{\ln \left(\omega_2 / \omega_1 \right)}$ $T \dots$ sweep length with: $\omega_1 \dots$ start frequency $\omega_2 \dots$ end frequency

Sweep Response To Impulse Response

Separating Harmonics

Simultaneous Measurement of THD and IR

Amplitude spectra of separated harmonics:

Measurement of multiple systems

1155 systems á 1.5 sec. Exp Sweep: 29' MLS: (13') 52' PIE: 38.5 days

Measurement of multiple systems

Measurement of multiple systems

Increasing SNR with Gabor Multiplier

Summary - Comparison

- Direct Method, PIE
- Maximum Length Sequence:
 - highest possible SNR
 - sensitive to distortions
- Exponential Sweeps:
 - separation of nonlinear distortions
 - simultaneous measurement of THD
 - measurements of multiple systems
 - high SNR (-3dB compared to MLS)
 - sensitive to transients